Only distances are required to reconstruct submanifolds

نویسندگان

  • Jean-Daniel Boissonnat
  • Ramsay Dyer
  • Arijit Ghosh
  • Steve Oudot
چکیده

In this paper, we give the first algorithm that outputs a faithful reconstruction of a submanifold of Euclidean space without maintaining or even constructing complicated data structures such as Voronoi diagrams or Delaunay complexes. Our algorithm uses the witness complex and relies on the stability of power protection, a notion introduced in this paper. The complexity of the algorithm depends exponentially on the intrinsic dimension of the manifold, rather than the dimension of ambient space, and linearly on the dimension of the ambient space. Another interesting feature of this work is that no explicit coordinates of the points in the point sample is needed. The algorithm only needs the distance matrix as input, i.e., only distance between points in the point sample as input.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Umbilicity of (Space-Like) Submanifolds of Pseudo-Riemannian Space Forms

We study umbilic (space-like) submanifolds of pseudo-Riemannian space forms, then define totally semi-umbilic space-like submanifold of pseudo Euclidean space and relate this notion to umbilicity. Finally we give characterization of total semi-umbilicity for space-like submanifolds contained in pseudo sphere or pseudo hyperbolic space or the light cone.A pseudo-Riemannian submanifold M in (a...

متن کامل

Extrinsic sphere and totally umbilical submanifolds in Finsler spaces

‎Based on a definition for circle in Finsler space‎, ‎recently proposed by one of the present authors and Z‎. ‎Shen‎, ‎a natural definition of extrinsic sphere in Finsler geometry is given and it is shown that a connected submanifold of a Finsler manifold is totally umbilical and has non-zero parallel mean curvature vector field‎, ‎if and only if its circles coincide with circles of the ambient...

متن کامل

RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM

Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...

متن کامل

Constructing Intrinsic Delaunay Triangulations of Submanifolds

We describe an algorithm to construct an intrinsic Delaunay triangulation of a smooth closed submanifold of Euclidean space. Using results established in a companion paper on the stability of Delaunay triangulations on δ-generic point sets, we establish sampling criteria which ensure that the intrinsic Delaunay complex coincides with the restricted Delaunay complex and also with the recently in...

متن کامل

Isotropic Lagrangian Submanifolds in Complex Space Forms

In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Geom.

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2017